A Distributed Sparse Signal Reconstruction Algorithm in Wireless Sensor Network
نویسندگان
چکیده
We address the sparse signal reconstruction problem over networked sensing system. Signal acquisition is performed as in compressive sensing (CS), hence the number of measurements is reduced. Majority of existing algorithms are developed based on p minimization in the framework of distributed convex optimization and thus whose performance is sensitive to the tuning of additional parameters. In this paper, we propose a distributed sparse signal reconstruction algorithm in the full Bayesian framework by using Variational Bayesian (VB) with embedded consensus filter. Specifically, each node executes one-step average-consensus with its neighbors per VB step and thus reaches a consensus on estimate of sparse signal finally. The proposed approach is ease of implementation and scalability to large networks. In addition, due to the observability of nodes can be enhanced by average-consensus, the number of measurements for each node can be further reduced and not necessary to satisfy lower bound required by CS. Simulation results demonstrate that the proposed distributed approach have good recovery performance and converge to their centralized counterpart. Keyword Compressive Sensing; Sparse Signal; Variational Bayesian; Consensus Filter; Wireless Sensor Networks
منابع مشابه
Distributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology
Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...
متن کاملENERGY AWARE DISTRIBUTED PARTITIONING DETECTION AND CONNECTIVITY RESTORATION ALGORITHM IN WIRELESS SENSOR NETWORKS
Mobile sensor networks rely heavily on inter-sensor connectivity for collection of data. Nodes in these networks monitor different regions of an area of interest and collectively present a global overview of some monitored activities or phenomena. A failure of a sensor leads to loss of connectivity and may cause partitioning of the network into disjoint segments. A number of approaches have be...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملA multi-hop PSO based localization algorithm for wireless sensor networks
A sensor network consists of a large number of sensor nodes that are distributed in a large geographic environment to collect data. Localization is one of the key issues in wireless sensor network researches because it is important to determine the location of an event. On the other side, finding the location of a wireless sensor node by the Global Positioning System (GPS) is not appropriate du...
متن کاملRegion Directed Diffusion in Sensor Network Using Learning Automata:RDDLA
One of the main challenges in wireless sensor network is energy problem and life cycle of nodes in networks. Several methods can be used for increasing life cycle of nodes. One of these methods is load balancing in nodes while transmitting data from source to destination. Directed diffusion algorithm is one of declared methods in wireless sensor networks which is data-oriented algorithm. Direct...
متن کامل